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CHAPTER 1

INTRODUCTION

In this monograph we study dynamic programming models in which the
transition law is specified by a set of nonnegative matrices. These models
include e.g. Markov decision processes with additive and multiplicative
utility function , input—output systems with substitution, controlled
multitype branching processes, etc. The main objective of this monograph
is to show that all these models can be studied within one general
matrix—theoretical framework. This framework will be built up by using
dynamic programming methods and will be based on the theory of sets of

general nonnegative matrices. This explains the title.

Methods which have been developed to determine an optimal control 1in
the above mentioned models with respect to various types of criterion
functions, will follow as special cases from such a general framework. As
an example we may think of a policy iteration method for a Markov decision
process with respect to some "sensitive optimality" criterion or of methods
to determine equilibrium prices in a Leontief substitution system. This
indicates the generality of our model, a model in which the theory of
generalized eigenvectors and generalized (sub)invariant vectors for sets of

nonnegative matrices plays a central role.

In this introductery chapter we first give a short historical review
of the problem field and a summary of our objectives (section 1.1). After
that a more formal description is given of the model to be studied in this
volume (section 1.2).

Section 1.3 lists a number of examples of models, arising from warious
fields in mathematics and in mathematical economics, which can be written 1in,
or easily be transformed into our problem formulation. The contents of the
‘subsequent chapters are summarized in section 1.4 and a list of notatioms

is given in section 1.5,



1.1. objectives

A short history; main

Since the publication of Bellman's '"'Dynamic Programming' in 1957
(BELLMAN [ 5]), interest in dynamic programming has expanded rapidly. In
his book Bellman formalized the technique of backward induction which
appeared to be fundamental for the analysis of sequential decision processes.
In the last chapter of that volume some attention is paid to Markov decision
processes. A deeper lnvestigation of the use of dynamic programming for the
control of Markov decision processes appeared three years later (HOWARD [29]).
Also Shapley's paper on stochastic games is now recognized as fundamental
to this field (SHAPLEY [53]). But, as Denardo remarked, the modern era
started with the work of Blackwell (compare Denardo's contribution to the
panel discussion in PUTERMAN [47]; see also BLACKWELL [8], [9D]).

Markov decision processes with additive reward function have been
studied with respect to several criteria, the classical ones being:
the expected total reward criterion and the expected average reward criterion.
More sensitive optimality criteria have been investigated by VEINOTT [64],
SLADKY [54], and DENARDO AND ROTHBLUM [16]. Often the transition probability
matrices in these models are allowed to be substochastic, i.e., a positive
probability for fading of the system is allowed (cf. VEINOTT [64],
ROTHBLUM [50], [51], HORDIJK [27] and WESSELS [71]).

Multiplicative Markov decision processes have been studied by HOWARD
AND MATHESON [30] and by ROTHBLUM [49]. Other models which are in fact
closely related (as far as structure is concerned), can be found in e.g.
MORISHIMA [42] or BURMEISTER AND DOBELL [12] (Leontief substitution systems)
and in PLISKA [46] (controlled multitype branching processes).

One of the objectives of this monograph 1s to analyze these models
by using nonnegative matrix theory instead of probabilistic arguments (note
that several models, which have been mentioned above, have no probabilistic
interpretation at all, and that the associated nonnegative matrices are

not stochastic in general). This takes us to our second subject. Nonnegative

various fields of applied mathematics, e.g. probability theory, demography,
numerical analysis and mathematical economics. Since the publication of the
basic work of PERRON [ 45] and FROBENIUS [24], [25] an overwhelming number
of papers appeared in the literature. To mention only a few important ones:
BIRKHOFF [7 ], KARLIN [33] and VERE-JONES [65], [66]. Excellent overviews
may be found in SENETA [52] and in BERMAN AND PLEMMONS [6 ]. Finally, some



results concerning sets of finite-dimensional nonnegative matrices, closely

related to some of our own work in part I of this monograph, are given
in SLADKY [56], [58].

We conclude this section with a sketch of problems we examine and
objectives we pursue in this monograph. The book is divided into two parts,
the first one dealing with finite-dimensional systems, the second one with
models of countably infinite dimension. Our main objective will be to give
a systematic treatment of the theory of sets of nonnegative matrices in
dynamic programming problems and to give a fairly complete analysis of the
asymptotic behaviour of dynamic programming recursions. In order to keep
the exposition lucid and reasonably simple we shall first treat the
finite—dimensional case. In this case it is possible to develop explicit
policy-iteration methods, which end after a finite number of steps, 1in
order to characterize and to determine matrices which maximize the growth
of the system. Brief attention will be paid to the continuous-time analogue

of the above sketched models.

The second part of this book is devoted to the development of a

theory for sets of countably infinite nonnegative matrices. Questions
concerning invariant vectors and optimal contractiom factors then arise and
we shall try to answer them. The reader familiar with CHUNG [13] will
recognize that some of our results are extensilve generalizations of results
in that volume. Our results are also related to well-known facts in potential
theory for Markov chains (cf. KEMENY, SNELL AND KNAPP [35], and HORDIJK
[27]). At several places we shall indicate applications of the results,

e.g. in the theory of Markov decision processes and strongly excessive
functions (cf. VAN HEE AND WESSELS [70]), and in the investigation of

sensitive optimality criteria in controlled Markov chains (cf. SLADKY [54]).



1.2. Description of the model

In this section a formal description is given of the dynamic systems
to be studied in this monograph. For notations the reader is referred to
section 1.5,

Central in the book is the concept of a set of matrices with the

product property. Let us first give the formal definition.

DEFINITION 1.1. Let K be a set of kx m matrices (k,m ¢ ]ﬁ) and let P.

denote the i-th row of a matrix P € K. Then K has the product property if
for each subset V of {1,2,...,k} and for each pair of matrices

P(1), P(2) ¢ K the following holds:

The matrix P(3), defined by
P(])i for 1 e V
P(3). :=
P(2)i for 1 € {1,2,...,k}\V,
1S also an element of K. ]

Roughly speaking this means that for i = 1,2,...,k there exists a collection

Ci of row vectors of length m. K is the set of all k x m matrices with the

property that their i-th row is an element of Ci’ for 1 = 1,...,k.

Next we describe the finite-dimensional models to be studied in part I.
N

Let R denote the N-dimensional Euclidean space. The set {1,2,..,.,N} will

often be called the state space and 1s then denoted by S. A nonnegative

matrix P is a matrix with all its entries real and nonnegative. Let K now

denote a finite set of nonnegative Nx N matrices with

One of our objectives is to obtain information about the asymptotic behaviour

the product property.

of the utility vector x(n) (an N-dimensional column vector), obeying the

dynamic programming recursion -

(1.2.1)  x(n+1) = max P x(n)

Dok n=20,1,2,...
€

where the maximum is taken component-wise and x(0) denotes a fixed strictly



vector. For interpretations of (1.2.1) we refer to section 1.3.

P@ﬁitiVﬁ

nark that the fact that K has the product property implies

Here we only re:

ch n the matrix P(n) € K such that

existence of a

x(n+1) = P(n) x(n) n=0,1,2,...

In chapter 6 we briefly treat the continuous—time analogue of the

discrete dynamic programming recursion defined above. A central role 1s then

collection of so—-called ML-matrices with the product property.

T~matrix is a square matrix with all its nondiagonal entries nonnega-

Let M denote a finite set of ML-matrices with the product property.

are now interested in the asymptotic behaviour of the vector function

z(t), defined by

t € [0,»),

with z(0) fixed, strictly positive (again the maximum is taken component-

Note that, since M has the product property, there exist matrices

Q(t) €

M such that

dz

() = Q) z(t) t € [0,=).
For an example we refer to section 1.3.

The analysis of these models requires a detalled study of sets of

nonnegative matrices (resp. sets of ML-matrices) with the product property.

In part I we shall develop a theory for sets of finite-dimensional matrices,

in part II infinite—dimensional models are investigated. The results in the

may be viewed as rather far—reaching extensions of the R—-theory

matrices, initiated by VERE-JONES [65], [66].

In this section, we list as examples a number of special cases of the

general models, sketched in the preceding section.




Markov decision processes with additive reward function

a. The discrete time case

Markov decision processes have been studied initially by BELLMAN
[ 4], [ 5] and HOWARD [29]. Suppose a system is observed at discrete points
of time. At each time point the system may be 1n one of a finite number of
states, labeled by 1,2,...,N. If, at time t, the system is in state 1, one
may choose an action, a say, from a finite action space A; this action re-

sults in a probability p?'.. of finding the system in state j] at time t+1.

ij
Furthermore a reward r?j 1s earned when 1n state 1 action a 1s taken and
the system moves to state j. Suppose
a A a
r.. 20; X p-.gl 1,Jml,fo-’N;a€A,
ij j=1 1

l.e., a positive probability that the process terminates is allowed.

Let V(O)i denote the terminal reward in state i and let v(n)i be the

maximal expected return for the n-period problem (L.e., with n periods to

g0), when starting in state i. For convenience define
P.. I.. 1 =1,..,N;: a € A,

Bellman's optimality principle implies that the following recursion holds
for v(n)., (cf. BELLMAN [5]):
N

(1.3.1) V(n)i = max {r> + Z p?. vin-1).} i=1,..,N.
ael . j=1 J

Recursion (1.3.1) can be written in vector notation when policies
are introduced. A policy £ is a function from {l1,...,N} to A. The set of
all possible policies is denoted by F. Let P(f) be the (substochastic) ma-
trix with entries p:fgi) and r(f) the vector with components r.f(i) for

o 1] 1
1,] = 1,2,...,N ; f € F. From these definitions, it immediately follows

that the collection of Nx(N+!) matrices
{(P(£), r(£)) | £ € F)

has the product property. Instead of (1.3.1) we may write



(1.3.2) v(n) = max {r(f) + P(f) v(n-1)} n e
' feF

i

where v(n) denotes the vector with components v(u)i, 1 = 1,...,N. By in-

troducing a simple dummy variable we obtain
P(f) r(f) v(n-1)

(1.3.3) (£) n € IN
0 ] 1

which is an example of the recursion (1.2.1), to be studied in part I of

an0£r&ph.

this

The continuous—~time case.

As in the previous example we consider a system with a finite state
space, {1,2,...,N} say, and a finite action space A. Suppose now the system
is observed continuously. At each time point t € [0,2) the system is allowed

to make a transition from one state to another one. It will be clear that

the significant parameters are transition rates rather than transition

probabilities (cf. CHUNG [13]).

We assume that a controller is allowed to react at each time point

t € E O

,*°). If at time t the system is in state i, and action a € A is taken
the system is supposed to make a transition to state j in a short time in-

. . o . ~ a .
terval At with probability qij At + O(At) (i,j=1,..,N). The probability of two
or more transitions is of order o(At) if At is sufficiently small (we say

. . -]
that a function h(t) is of order o(t) for t small if lim t h(t) = 0). The

t-0
probability of making no transition in a short time interval At 1s then

equal to 1- ) gq.. At
j=1
Suppose furthermore that, if the system is in state 1 at time t and

~ &

action a is chosen, a reward of r.. per unit time is earned during the time

that the system remains in state i. If the system moves from state 1 to

state J a reward r;; is received (i,j = 1,...,N). Now, 1if V(t)i denotes the

1 expected return in a time interval of length t when starting in

36 | x i BB P

»

state 1 and v(O)i denotes the terminal reward in state i, it follows from

1man's optimality principle that for i = 1,...,N and t € [0,»):

5 3 At) (T, At +v(e) ) + § G, At (x .+ v(E) )} +0(aE)

’ jm] 1] 1]




Define for i,j = 1,...,N and a € A

il 54i 1] 1] 1] 1 11 5=1 1] 1]
Then, for i = 1,...,Nand t ¢ [0,»), we obtain
g v(t+At), - v(t). N
(1.3.4) ——32 gy 22+ ] g3 v} o(At)
At acA i=1 J J At

Again, a policy f is defined as a function from {1,...,N} to A. Let F de-

. . : : f(i
note the set of all possible policies, Q(f) the matrix with entries qi§ )
and r(f) the vector with components ri(l). If we take the limit in (1.3.4)

as At > 0 we obtain, in vector—-notation:

(1.3.5) %{-(c) = max {r(f) + Q(f) v(t)} - t ¢ [0,).
' feF

Define a scalar function vN+l(t)

Hi

1 for t € [0,2). Then we may write

%%(t) - Q(f) x(f) v(t)
(1.3.6) dv = max t € [0,x),

which is an example of the model to be studied in chapter 6. Note that the
collection of matrices

| | Q(f) r(£f) 5

0 0 f € F

is a collection of Ml-matrices with the product property.

-----

Consider once again the discrete-time Markov decision process which



has been described in part a of example 1.3.1. Suppose now that a decision
maker represents his risk preference by a utility function u that assigns

: : a .
a real number to each of a number of possible outcomes. Thus, 1f r. 1s the

1
expected reward when in state i action a 1is chosen, the value for the de-

.. . a : . :
cision maker is equal to u(ri); if v(n)i is the maximal expected return

for the n—period problem, then the utility for the decision maker equals

u(vin) i) .

In example 1.3.1, part a, we treated the case in which u(x) = x for
each possible return x, which implies risk-indifference. HOWARD AND MATHE-
SON [30] treated the case in which the utility function has the following

form:

(1.3.7) u(x) = —(sgn v) exp(-yx)

where ¥ # 0 is called the risk aversion coefficient and sgny denotes the
sign of y. A positive value of y indicates risk aversion, a negative value

indicates risk preference. Note that the function u(.), defined in (1.3.7),

1is increasing.

It follows that a stream of rewards r; » T, seeesTs has a utility
] 2 n

-(sgn v) exp(-y(r. +r. +...+r. ))
i, 1 1
] 2 n
Now, let v(n)i denote the utility of staying in the system for n periods

when starting in state i. Using the concept of 'certain equivalent",
HOWARD AND MATHESON [30] showed:

N
(1.3.8) v(n). = max z p.o exp(~yr..) v(n-1). 1=1,..,N; ne IN.
1 Lo F1] 1 J b
acA 3=1
Defining
~a _ _a ___a
p‘i_‘] pij exp ( lej)
we obtain
S a
(]l3l9) V(n)i = mMax z pij v(n_l)j i = l,au,N; n € ]N,



10
or, defining f, F, P(f) and v(n) as usual,

(1.3.10) v(n) = max P(f) v(n-1) n e IN.
feF
1.3.3. Controlled multitv

e branching processes

Consider a population consisting of individuals of N types, labeled
1,2,...,N, which is observed at time points 0,1,2,... . Each individual
lives from one such time point to the next, at which moment he produces a
random number of offspring; all these numbers are supposed to be independent.
At time t an action is chosen (from a finite set A) for each individual.

Different actions may be chosen for different individuals (possibly of
the same type).

At each time point the state of the system is described by a vector

(s],. ..,SN), where S. denotes the number of individuals of type i. Let

pi_(tl’”"tN | @ ) denote the probability that (as a result of action acA)

one individual of type i produces exactly tj individuals of type i,

] = 1,2,...,N. Suppose furthermore, that, if for an individual of type 1
. . a .
action a 1s chosen, a reward r. 1s earned

state space (cf. PLISKA [46]).
Note that, in general,

different actions may be selected for different
individuals of the same type.

A decision rule that selects the same

action for all individuals of the Same type and such that this selection

1s independent of the state (sl, +++38.) is called static. PLISKA [46]

showed that the multitype branching process,

described above, can be con-
trolled by

considering only static decision rules, and a collection of

Let uiaj denote the

vidual of type i when action a is chosen. Assume
0 < u? < o . . |
= Yy 1, =1,...,N; a € A,

Let, furthermore, x(n)i denote the maximal eéxpected return when we start
with exactly one individual of type 1, no individuals of other types, when
only static decision rules are considered,

and with n periods to go. Then
obviously
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a

— a e g — -
(1»3#11) X(n)i“max {I‘i"" uij X(n l)j} L = ],au,N, n € m,

ach

.
I 12

]

where X(O)i 1s a terminal reward. If we define a static policy f as a func-
f(i)

tion from {1,...,N} to A, and U(f) denotes the matrix with entries u;s
while r(f), resp. x(n), are the vectors with components ri(l), resp. x(n)i,
then we may write

(1.3.12) x(n) = max {r(f) + U(f) x(n-1)} n € N

feF

where F denotes the set of all static policies. As before, (1.3.12) can be

transformed into a recursion of the form (1.2.1):

n € NN,

= max U(f) r(£) x(n-1)
feF 0 1

It is interesting to note that PLISKA [46] showed that, if both static and
nonstatic decision rules are considered, the maximal expected return for

an n-period controlled multitype branching process, when starting in state
(s],n..,sN), and summed over the total number of indiwiduals at the start,

is equal to

N
i£1 Si x(n)i .

Hence there exists a static decision rule which is optimal. It follows that
these problems can be handled either as a Markov decision process with a
countable state space or as a more general dynamic programming problem with

a set of finite—-dimensional nonnegative matrices with the product property.

1.3.4. An input-output system with substitution

An economic system, consisting of N industries (or resources), 18
controlled at discrete points of time. We assume presence of a sufficient

amount of labour (of homogeneous type). Each industry i produces a single

commodity, also indicated by i (mo joint production is allowed). Further-

more, there exists a finite set A of alternative technologies for each in-

L

dustry i. If industry i chooses technology aeA, we denote by p{? the num-

ber of units of commodity j (produced in the previous period) which is



12

: .. : a
- necessary for the production of one unit of commodity i. Furthermore, 2.

1
denotes the amount of labour, necessary for the production of one unit of
commodity i, when techmnology a is chosen.

Let w be the (constant) wage rate and let c(n)i denote the cost of
the production of one unit of commodity i at time point n. We assume
C(O)i >0 for i = 1,...,N. Since we may expect that each industry is inte-

rested in minimizing its costs, we find

N
(1.3.13) c¢(n). = min (w2 + E p.a. c(n-1).} i=1,...,N; ne IN
T aeA - =1 ] J

(here we assumed that the production costs of one unit of a commodity 1is
equal to its price on the market).
A technology vector f is a function from {1,...,N} to A, which spe-

cifies for each industry a particular technology. The set of all technology

vectors 1s denoted by F, P(f) denotes the matrix with entries p?gl) and

) 1]

2(f) the vector with components P.f(l), for all i,j,f. With these defini-
tions, (1.3.13) can be written as

(1.3.14) c(n) = min {wa(f) + P(f) c(n-1)} ne N,

feF

where c(n) denotes the vector with components c(n)i, 1 =1,...,N.

As before, we find a recursion of the form (1.2.1) ¢

c(n) = min | P(f) w2(E)) { c(n~1) nelN.
1 feF | O 1 1

Here, we have an example with "max" replaced by "min'".

treated in essentially the same way as the one,

These models can be

introduced in section 1.2.

The model, described above, is an example of a Leontief substitution system
(cf. MORISHIMA [41], BURMEISTER AND DOBELL [12]).

1.3.5.

s+++,K} results in a probability
following properties:

a. There is a probability p?

distribution with the

that one receives i units and the pro-
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cess continues (L = 1,2,...,N);
b. There 1s a probability pg that one receives nothing and the pro=—-

cess terminates.

Now let n be a fixed integer and suppose a decision maker wants to

maximize the probability that he receives at least a total number of n

units before the process terminates. Let uj. denote the maximal probability

of obtaining at least j units before termination of the process,; then

N

max ) P ou. . j >0
. & 1 J-1

a 1=1

I

(1.3.15) u
] 17 50,

Applying a simple transformation, this problem can again be written in the

f

formulation, introduced in section 1.2. For ] 1,2,...,0n we have

where we start with (UO"”’ul--N))T = (1,...,1)T.

It follows that the decision maker has to solve an n—-step sequential deci-

sion problem of type (1.2.1).

1.4. Summary of the subsequent chapters

As mentioned already, one of the main objectives of this monograph
is to analyze the asymptotic behaviour of dynamic programming recursions
(or quasi-linear equations, cf. BELLMAN [ 3 ]) of type (1.2.1), based on a
set K of nonnegative square matrices with the product property. It will be clear
that some insight in the structure of such sets of matrices is fundamental.
In chapter 2 we first briefly repeat some well-known results concerning
structure and properties of a single nonnegative matrix. A relatively

large part of this chapter is devoted to what we will call a generalized
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eigenvector theory for square nonnegative matrices (cf. ROTHBLUM [48]).
Chapters 3,4 and 5 deal with sets of finite-dimensional nonnegative ma-
trices. In chapter 3 it is shown that a particular block-triangular struc-
ture exists for sets of nonnegative matrices which is closely related to
the behaviour of dynamic programming recursions of type (1.2. 1). In chap—
ter 4, convergence results for these recursions are proved under rather
special conditions. Indispensable for the analysis in this chapter 1s a
result, recently proved by SCHWEITZER AND FEDERGRUEN [61], concerning geo-
metric convergence in undiscounted Markov decision processes. The original
proof of this result is extremely complicated: in appendix 4.A we present
a new, relatively simple proof, together with some extensions. This geo—
metric convergence result plays a key role again in chapter 5, where both
convergence results for recursions of type (1.2.1) in the most general case
are proved, and a theory concerning generalized eigenvectors for sets of
nonnegative matrices with the product property is completed. Key words in
the analysis are spectral radius, index and generalized etgenvectors. Brief
attention will be paid to estimation methods for these characteristics.
Typical for the finite case is that all proofs can be given in a construc-
tive way; in particular it is possible to develop policy iteration methods
for the construction of matrices which maximize the "growth" of systems

of type (1.2.1).

In chapter 6 we briefly treat the continuous—-time analogue of the
model, studied in chapters 3,4 and 5. There we deal with a set of ML-ma-
trices with the product property. Special attention is paid to an expo-
nential convergence result for undiscounted continuous~time Markov decision
processes (appendix 6.A), which may be viewed as an analogue of the main
result of appendix 4.A in the discrete-time case,

Although a theory for sets of nonnegative matrices with the product
property has been developed mainly for its usefulness in the analysis of
dynamic programming recursions, the results are interesting in themselves;
they provide a considerable generalization of the classical Perron-Frobe-

nius theory. In part II (starting with chapter 7) an attempt is made to

an extension is relevant iIn connection with the study of denumerable Markov

decision processes, invariant vectors for sets of nonnegative matrices etc.
Chapter 7 is an intraductory one in which Markov chains with a countable

state space are discussed. Strong ergodicity and the Doeblin condition are

some of the key concepts in the analysis. Although interesting in itself,
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the results mainly serve to explain and motivate the conditions of the
theorems, proved in chapter 8. In that chapter the structure of countably
infinite nonnegative matrices is analyzed; it tuins out that a beautiful
extension of the generalized eigenvector theory, treated in chapter 2,
exists. Vere-Jones' R-theory (which deals only with irreducible nonnega-—
tive matrices of countably infinite dimension) is used as a starting point
(cf. VERE-JONES [65], [66]). The results obtained are related to results
in potential theory for Markov chains (cf. KEMENY, SNELL AND KNAPP [35]) .

In chapter 9, finally, we return to sets of (countably infinite) nonnega-—

tive matrices and show how results, similar to those in chapter 3 can be
obtained. As a by-product of our analysis we obtain a semi-probabilistic
interpretation of (generalized) eigenvectors and (generalized) invariant

vectors which seems to be new even 1n the finite case.

1.5. Notational conventions

' We shall be concerned with sets of nonnegative matrices with the pro-
duct property (cf. definition 1.1). Unless stated otherwise all matrices
will be square and of a fixed dimension. Throughout part I, N denotes the
dimension of these matrices. Motivated by the theory of Markov processes
the set {1,2,...,N} is called the state space and denoted by S. Part II
deals with matrices of countably infinite dimension; in this case
S := {1,2,...1}.

Matrices will be denoted by capitals P,Q,..., (column) vectors by
lower case letters X,y,u,w,... . The identity matrix (ones on the diagonal,
zeros elsewhere) is denoted by I, the vector with all components equal to

one by e. The null matrix is denoted by 0, the null vector by 0.

The n—-th power of a matrix P is denoted by Pn; pi(?) denotes the ij—th
entry of P" . Instead of pi(_;.) we usually write Pij' Pi denotes the i-th
row of P. The i-th component of a vector x is denoted by X o We define
P0 = 1.

As usual IN denotes the set of positive integers, IN := INu{~},

— . +
N, = Wu{0}, N =‘-'==]N0 U{e}. IR is the set of real numbers, IR the set
- _ + + k
of positive real numbers, R := Ru{e}, R, :=IR U {0}. IR denotes the

k~fold cartesian product R x R x ... x R (k € IN).
: +
A nonnegative square matrix P is a function from S x S to ]RO.. 1f

o > 0 for all i,j € S the matrix P is called positive. If P is nonnega—

1]
tiv

e (positive) we write P 2 0 (P > Q). We say that P is semi-positive and



denoted by PT; the transpose of a

xT. Subsets of the state space S will be

5C

the restriction of the square

Similarly, x 1is the restriction of the

plk,2)

partition of the

the restriction of P

» k=1,...,r.

y SENETA [52] » who uses the word in connection with the

T L&ﬂn t i @ f i n E{ﬁ; : th & 1 ol t i C & 1 &c 0n0 ” 8 »

m o ) . g i c ¢l 1 Ord e r 3

ymbols are used in several chapters. Let

(y(1),...,y(n)) be two sequences of real-valued vectors.
We say that (x(1),...,x(n)) *» (y(1),...,y(n)) if x(1) > y(1) or if for some
k € {1,...,n~1} holds that x(2) = y(&) for £ = 1,2,...,k and x(k+1)>y(k+1).
r definitions hold for », ¥, <, < and {.

Let f(t)
for t €

and g(t) be real-valued (vector) functions such that g(t)>0
IR. Then £(t) = o(g(t)) for t + a (a € R) if lim (g(t)i)mlf(t)iﬁo
‘or all 1. Furthe

| &
rmore f(t) = 0(g(t)) for t - a if there exists '‘a constant

h that |f(t)] < c (g(t)) for t close to a.

symbol := is used to define concepts. The symbol ~ is used for

ymptotic equality; for instance x(n) ~ y(n) for n -+ = means that for each

€ > 0 there exists an integer n, such that (l-e) y(n) < x(n) < (1+e) y(n) for

The Kronecker delta aij 1s defined by Gij 1= ]
# j. By || ..|| the usual sup-norm is denoted.
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CHAPTER 2

NONNEGATIVE MATRICES: A STRUCTURE ANALYSIS

Any investigation of dynamic programming recursions of the type

(1.2.1) x(n) = max P x(n—-1) n=1,2,...; x(0) >0

Pe K -
with K a set of nonnegative square matrices with the product property, en—
tails the study of products of nonnegative matrices, or, in the case that
K contains only one matrix, of powers of that matrix. Clearly, powers of a
square nonnegative matrix can be studied by familiar matrix—theoretical
methods such as Jordan decomposition. The disadvantage of these methods how-
ever is that the nonnegativity of the entries is completely ignored. A graph-
theoretical, rather than a matrix—theoretical, approach appears to be the
natural answer to this objection (cf. SENETA [52], p. 9-12 and ROTHBLUM
[48]). The authors mentioned exploit the idea that a square nonnegative
matrix P of dimension N can be represented by a directed graph with N nodes
in which a transition from node i to node j is possible if and only 1if
P; 3 >0 (i, = 1,...,N).

In this chapter a rather detailed analysis of the structure of a single
square nonnegative matrix is presented. We follow the (graph-theoretical)
terminology of ROTHBLUM [48], which is strongly motivated by the theory of
Markov chains. In section 2.1, a brief review of some well-known definitiomns
and results will be given (most of them without proof) which can be found,
for instance, in SENETA [52] or BERMAN AND PLEMMONS [ 6 ]. We also give some
immediate corollaries which will be needed later. In section 2.2, a funda-~
mental decomposition result for one square nonnegative matrix 1s presented
which describes the hierarchical structure of the underlying graph; this
decomposition proves to be extremely useful for the analysis of the be-
haviour of powers of that matrix (cf. SLADKY [58], zIJM [76]). Section 2.3
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i1s devoted to an analysis of the structure of so-called generalized eigen-
vectors, assoclated with the spectral radius of a square nonnegative matrix,

whereas section 2.4 relates these results to more familiar concepts in ma-
trix theory.

The results obtained in this chapter imply some immediate corollaries

on the behaviour of the vector x(n), defined by
x(n) = P° x(0) ne WN; x(0) >0,

where P denotes a square nonnegative matrix. However, the great advantage

of thel methods developed here is that they can be extended to sets of non-

negative matrices with the product property, where they yield analogous
results for dynamic progr

amming recursions of the type (1.2.1). In order
to facilitate the proofs of these extensions, state classifications are
introduced in section 2.5, and the results of chapter 2 are reformulated in
terms of these state classifications. In fact, state classifications relate
in a very precise way the hierarchical structure of the graph, associated
with a nonnegative matrix, to the behaviour of its powers; they will prove
to play a key role in the forthcoming analysis.

Throughout this chapter P denotes a nonnegative Nx N matrix; the
state space S is defined by S := {1,2,...,N}.

2.1. Basic tools and definitions

In this section we briefly review some (mostly well-known) definitions
and results concerning the structure of nonnegative matrices.

We start with a definition.

DEFINITION 2.1. We say that state i has access to state ] under P if
n

Pij > 0 for some n € INO (1, € S).

[]

» 0 ' " > * L »
Note that, since péi)w I, state i has always access to state i. Definition

2.1. reflects the idea that the positive-zero configuration of P can be re-
presented by a directed graph. Accordingly, we consider P as a function from

| + . .
S x S to 0 rather than as a linear operator from ]RN to IRN .

Powers of square matrices are usually studied in terms of their eigen-
value structure (Jordan decomposition). For nonnegative square matrices an-

other approach exists, based on accessibility relations between the states
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(cf. SENETA [52]). It can be shown that an analysis of the behaviour of

powers of a square nonnegative matrix becomes much easier if in the under-

lying graph any two states have access to each other.

DEFINITION 2.2. P 1is called Zrreducible if any two states have access to each

other. In all other classes we call P reduczible. O

This definition implies that a square reducible nonnegative matrix
can be written in block—-triangular form, possibly after a permutation of
the states. In other words: using the accessibility relations a hierarchical
structure of the state space can be shown.

Irreducible nonnegative matrices can be either periodic or aperiodic.

We need the following definition:

DEFINITION 2.3, Let P be irreducible. The period d, of a state i with res-
pect to P is defined by

(n)

d. := g.c.d {nlpii

: >0, n € N} i€ S. _ L]

A proof of the following result can be found in SENETA [52]:

PROPOSITION 2.1. Let P be irreducible. Then all states have the same period,
d say, with respect to P. There exists a unique partition {C(1),...,C(d)}
of S such that i € C(k) and P. > 0 implies j € C(k+1) 1f k < d and j € C(1)

J
if k = d. i

P is said to be apertodic if d = 1, otherwise it is periodic with period d.
Some authors use the word (a)cyclic instead of (a)periodic.

Powers of square matrices are usually studied by eigenvalue methods.
The eigenvalues on the spectral circle, i.e., the eigenvalues with largest
absolute value, play a special role, in fact they characterize the first-
order asymptotic behaviour of P’ for n - ». If P is nonnegative, these ei-
genvalues and their associated eigenvectors possess very nice properties;

these properties are summarized below in the famous Perron—~Frobenius theorem.

PROPOSITION 2.2. Let P be a square nonnegative matrix and let o(P) denote
its spectral radius, i.e., o(P):=max { |A] | A an eigenvalue of P}. Then

o(P) itself is an eigenvalue of P with which can be associated semi-posi-
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irreducible with

d then there exist precisely d eigenvalues
D:
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18 irreducib

)] or SENETA [52].

le and

Note that o(P)>|A|

er iOd i. Ce

n = | 9 2 AR Wh ere X (J ) i S

EUﬂstiww: what nonnegac. matrices pPOSSESsSs strict-

~tors. Irreducibility is a sufficient (but certainly not

Before answering few defini-

this question, we need

) be a proper subset of S. The restriction PD of P to

' Z ym‘: noOYr o f P . D

result holds.

spectral radius U(P?) of any prinCiPal minor P' of P

the spectral radius o(P) of P. If P is irreducible, we have

o(P); if P is reducible, then o(P') = o(P) for at least one irre-

principal mino:

matrices can be written in block-triangular

after perm

tation of the states) in such a way that the

gonal are irreducible. This defines a partially hierarchic-
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C

DEFINITION 2.5. A class of P is a subset C of S such that P~ is irredu-

cible and such that C cannot be enlarged without destroying the irreduci-
bility. C 1s called baszic if U(PC) = og(P), otherwise C 1s called nonbaszc

. . C .
(in which case o(P") < o(P), according to proposition 2.3). 0

The reader may note that P partitions the state space S into classes,
c(1),C(2),...,C(n) say. If P(l’J) denotes the restriction of P to C(i)x C(3),
i,j = l,...,n, then, possibly after permutation of the states, P can be

written in the following form:

pll D (1,2)  L(1,n)
P(2’2)-~-- P(z’n)
(2.1.1) P =
- f(n,n)
o, . .. .
with P =0 for 1 > 3, 1,3 = 1,...,n. Hence classes can be partially

ordered by accessibility relations. We may speak of access to (from) a class

if there is access to (from) some (or equivalently : any) state in that class.

DEFINITION 2.6. A class C, associated with P, 1s called final, if C has no
access to any other class. A class C is called Znztzal, 1if no other class

has access to C. i

The question which class has access to which class 1s fundamental for
the investigation of powers of nonnegative matrices. The existence of strict-
ly positive eigenvectors also depends completely on the accessibility struc-

ture. We have

PROPOSITION 2.4. P possesses a strictly positive right- (left—) eigenvector
if and only if its basic classes are precisely its final (initial) classes.
i
For a proof we refer to GANTMACHER [26] again.
Matrices with strictly positive eigenvectors (and especially their
powers) have very nice properties as has already been indicated above.

The following lemma is fundamental for the analysis in the forthcoming sec-



nermore, p;j > 0 1f and only if

inder P. If the
sic classes is aperiodic, then

has access to j

u. 1,7 € S

stochastic (i.e., P >0, Pe = e). For stochastic matrices the results

ell known (cf. KEMENY AND SNELL [34 1). By the inverse transformation

results for P are translated into the corresponding results for

]

projector on the null-space of (0I-P), along
matrix (oI-P+P™) is often called the fundamental

AND SNELL [34]). Note that the restric-—
each basic class of P 1is strictly positive.

matrix P does not possess a strictly
positive eigenvector, associated with its spectral radius o, it is easy to

tal role of o with respect to the behaviour of P,
characterization is useful.

lowing

2.6. Let P have spectral radius o. Then
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a. o = lim || P*)|'/® = ing || 277"
n-r n
b. O = sup {A|3W>g . PW?‘:}.W} = 1nf {llawfb 9 . PW:AW}

c. For each XA > o there exists a vector w > 0 such that Pw < Aw.

PROOF. a. follows from DUNFORD AND SCHWARTZ [21], p.567, b. follows from
a. To establish c., take w = (AI—P)“le. ]

If A > o0, w > O such that Pw < Aw one immediately sees that \"w dom-~
inates an(O) if x(0) < w. A vector w, satisfying w >_9.and Pw < Aw,
1s often called XM-subinvariant (cf. chapter 8 of this monograph) or strongly
excesstive (cf. VAN HEE AND WESSELS [70]); these vectors play an important
role in stochastic analysis and in potential theory for Markov chains (cf.
KEMENY, SNELL AND KNAPP [35] or HORDIJK [27]).

A more detailed anélysis of the role of the spectral radius with res-—

pect to powers of a nonnegative matrix will be given in the next section.

Accessibility relations between basic (and nombasic) classes will play a fun-

damental role again. We now conclude this section with two lemmas which are

needed in the sequel.

LEMMA 2./. Let P be 1irreducible, let o be its spectral radius and let x > 0.

Then Px > ox implies Px = ox. Analogously, Px < ox implies Px = OX.

PROOF. Multiplying Px > ox by the strictly positive left—eigenvector of P,

assocliated with o, yields o > o, a contradiction. Hence Px = ox. Similarly,

if Px < x. []

LEMMA 2.8. Let P have spectral radius ¢ and suppose Px > Ax for some real

A and some real vector x with at least one positive component. Then o > A.

PROOF. Let y := (AI-P)x. Then y < 0. If X > o then AI-P is nonsingular and

v = (AI*P)“]y _ Z l“(n+l)Pny < 9’

n=0

which gives a contradiction. Hence o > ), ]



In the next section, the structure analysis of reducible

nonnegative matri-
‘he concepts introduced there are less familiar: again

graph~theoretical interpretation.

vhich 1is strong-

gative mat

of finite dimension) and let S

between

precisely

aey . i f | C

"C, and further-

(use (2.1.1)). We shall

exists a relationship between certain chain-structures
and nonbasic classes and

the size of the Jordan~block, associated

o(P), if o(P) is degenerated (cf. PEASE [44]).

x(n)1 and x(n)z, caused by the

and Py and P,, are both equal to
‘ms of classes : the '

aCCcess to state 2

matrix P possesses two basic
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asses : {1} and {2}, the first one having access to the second one, which

implies an asymptotic behaviour of the vector x(n) of the form

x(n)l -n2nc] x(n)2 ~ 2nc2

where c, and c, depend on the starting vector x(0).

The next example 1s an extension of the previous one.

au 2 ° 2 »

2 4 0 xl 0
P O 1 4 % (0) = X, S 0
O 0 2 x3 0

Now it is easy to verify that for n -+ » x(n) = P x(0) obeys

x(n)l ~ nan1 x(n)2 ~ 2nd2 x(n)3 ~ 2nd3

wilere ag

ain d], d2 and d3 are constants, depending on x(0).

Apparently, the presence of a nonbasic class in a 'chain between two

basic classes' (definition follows below) does not really influence the

asymptotic behaviour of x(n) (note that still the first basic class has
access to the second one, but now via a nonbasic class). It is this rela-

tionship, between the position of basic and nonbasic classes and the beha-

viour of powers of a nonnegative matrix, that will be studied in this section.
What we need first is a quantitative indication of the position of a

We start with the definition of a chain.

C 1 as88.

DEFINITION 2.7, By a chain of classes of P we mean a collection of classes

{c(1), ¢(2),...,C(n)}, such that P; jk> O for some pair of states (ik,jk)
» » . k : »
with 1, € C(k), Iy € C(k+l), k = 1,2,...,n~1. We say that the chain starts

with C(1) and ends with C(n). The length of a chain is the number of basic

classes it contains. ]

The position of a class is now defined as follows.



To 1llustrate these definitions consider the following example.

gle.of P contains only zeros. Each class of P contains

lhe following graph shows the positions of these classes

3

———reen> & B

| » | 5 B

O

31fying the classes according to their position y We obtain:

Basic ¢ lagsses { 2 } { 4 } {5 } Nonbasic cl asses { ] } ‘[ 3 }
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LEMMA 2.9. Let P have spectral radius o and degree v. There exists a parti-
tion {D(v),...,D(1),D(0)} of the state space S such that D(k) 1is the union
of all classes with depth k, for k = O,1,...,v. If p(k’i)

k, 2
triction of P to D(k) x D(2), then P( ’ )m

denotes the res-—
0 for k < 2 (k,2 = 0,1,...,Vv).

T

After possibly permuting the states we may write

P(v,v) P(v,vﬂl). ‘_ P(v,l) P(\-'.-,0)

(anal) P(\)“lyo)

..... P
(2.2.1) P = . :
- p(1, 1) 5 (1,0)
(kak) (0’0)

We have o(P ) =g for k = 1,...,v and o(P

(k)

) < o (if D(0) 1is not

empty). Furthermore, there exist vectors u > 0 such that

(2.2.2) pK) (U)o (K) kK = 1,...,V.

PROOF. Since the degree of P is v, there exist classes with depth k, for

k=1,...,V, and possibly classes with depth zero (nomnbasic classes which

do not have access to any basic class). Obviously, a class of depth k has
(k,2) _

no access to a class of depth 2 > k, hence P O for k < 2. Basic

Loty
Lo

classes with depth k do not have access to any other class of depth k,
whereas nonbasic classes with depth k must have access to at least one ba-
sic class of depth k. Furthermore, o(P(k’k)) =g for k=1,...,v and
d('(o’.)) < 0 by proposition 2.3. and definition 2.5. Proposition 2.4. now
implies the existence of vectors u(k) > g.such that (2.2.2) holds for

}'(m 1,;..,\). D

Remark. Note that each state in D(k) has access to some state in D(k-1),

for k = v, v-1,...,2.

DEFINITION 2.10. The partition {D(v), D(v-1),...,D(1), D(0)}, such that
D(k) contains all classes with depth k (k = v, v-1,...,1,0), is called the
principal partition of S with respect to P. (]

Consider, once again, the matrix of example 2.3. We find D(2)={1,3,4},

D(1) = {2,5}, D(0) = . In other words, after permuting the states we have
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the following structure:

1 1 0 4
- 5 I:,(2,.2) p(2,1)
2
P = =
2 0 P(l,l)

Both P(2,2) and P(l’ 1) possess a strictly positive right—eigenvector, asso-

ciated with eigenvalue 2. If we define an "aggregated'" state space

S' = {1',2'} with 1' = D(1) and 2' = D(2), and an "aggregated" matrix P'
on S' x S' by

. 2 4
I {
-0 3
then the behaviour of powers of P' is in essence the same as the behaviour
of powers of P. Note that P' has been investigated in example 1; there we

saw that the position of the basic classes determined the asymptotic beha-

viour of x(n) = P" x(0) as n + =. More generally we have

LEMMA 2.10. Let P have spectral radius o and degree v and let
{D(v), D(v-1),...,D(1),D(0)} be the principal partition of S with respect to P.
Choose x(0) > 0 and let x(n) = p™ x(0), n=1,2,... . Then there exist con-

stants c,, ¢, and vectors u(k) > 0, satisfying (2.2.2), such that for n € IN

(k) n {-1 =-n k .
(*) cus < {k-—l] o x(n)i < czui ) 1€ DkK); k= 1,...,v,
and
lim o © x(n)i = ( i ¢ D(0). L]
>0

The proof of lemma 2.10 is postponed until section 2.3, where it

follows immediately from a general result concerning the structure of gener-

alized eigenvectors, associated with the spectral radius of a square non-

negative matrix. For a direct proof of lemma 2.10., see ZIJM [76].



31

Lemma 2.10., shows the desired relationship between the behaviour of
x (n) = P" %(0) and the position of the classes of P. The concept of '"depth
of a class C'" appears to play a key role, which means that the maximal num-
ber of basic classes which can be found in a chain, starting with C, is
relevant. A relationship, completely analogous to (*), exists between the
height of a class and the behaviour of x(O)TPn, restricted to that class,
as n > © (note that the depth of C with respect to P is equal to the height
of C with respect to PT).

We conclude this section with an extension of lemmas 2.9. and 2.10.
which will be needed in the sequel. Note that the concepts ''basic
class', ""depth" and ''"degree'" are defined with respect to o(P). However, if
D(0) # ¢ and U(P(O’O)) # 0, we may repeat the procedure, i.e. decompose

P(O’O) 1n exactly the same way. Continuing in this way we finally obtain

LEMMA 2.11. Let P be a square nonnegative matrix. There exist an integer
r = r(P) and a partition {I(1), I(2),...,I(r)} of the state space S, such
that the following properties hold:

(k,2)

a. Let P denote the restriction of P to I(k) x I(LR).

Then PCk,R) = 0 1f k > 23 k,2 = 1l,...,r.

——

b. For k < £,we have o(P(k’k)) > G(P(R’R))'with equality

only if each state in I(k) has access to some state in I(2),

k’gl o~ 1".G’r*

(k)

c. There exist strictly positive vectors u such that

(2.2.3) plk,k) &) _ ple,k)y (k) K= 1.2,...,T.

],2,..# L

d. Choose x(0) > 0 and let x(n) = p- x(0) for n

For each k ¢ {1,2,...,r} define the integer t by

(k+£,k+£)) (k,k))}

t, = min {2 | 0 < & < r-k, o(P < g(P

and tk e= r-k+1 1f the minimum does not exist.

| (r,r)

Then, i1if o (P C

) 2 0,there exist rnositive constants c¢

17 727

depending on x(0) only, such that
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1

~1
n
c u.(k); (t | ) U(P(k’k))_n x(n)i < c, u.(k)

for ieI(k), k=1,...,r and n € N. [

DEFINITION 2.11. The partition {I(1),I(2),...,I(r)}, discussed in lemma 2.1l
is called the spectral partition of S with respect to P.

In the next section we discuss generalized eigenvectors, associlated

with the spectral radius of a square nonnegative matrix. It will appear

that a strong relationship exists with the decomposition result of lemma 2.9.

2.3 Generalized eigenvectors

In the preceding sections we have seen that nonnegative matrices with
strictly positive eigenvectors have nice properties, in particular with res-
pect to their powers (note that for these matrices the integer r(P), defined
in lemma 2.11, is equal to one). One of the most important cases where such
a strictly positive eigenvector does not exist is the case with the degree
of P. larger than one. In this case the spectral radius o(P) is degenerated
as an eigenvalue (i.e., the number of independent eigenvectors assoclated
with o(P) is smaller than its algebraic multiplicity), which implies the
existence of generalized eigenvectors (cf. PEASE [44]). In this section,
the structure of these generalized eigenvectors is studied and related to
accessibility relations between basic classes and so to the decomposition
result of lemma 2.9.

Let us start with a formal definition.

DEFINITION 2.12., Let P have spectral radius o and for k € IN let Nk(P) be
the null space of (P-OI)k. The Zndex n(P) of P is the smallest nonnegative

integer k such that Nk(P) = Nk-l-:l (P). L]

If P is an N x N matrix with spectral radius ¢ and index n, then n < N and

Nk

1
N(P)gNz(P)g....gNn (P) = (P) for k > n

(compare e.g. DUNFORD AND SCHWARTZ [21], p.556). The elements of N (P) are
called generalized etgenvectors. 1If x € Nk(P)\ Nk"] (P), we call x a gene-

ralized etgenvector of order k.
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ROTHBLUM [48] showed that generalized eigenvectors, associated with
the spectral radius of a square nonnegative matrix, have nice properties.

Before discussing his results we consider once again the matrix of example
2.1.

Example 2.1. (continued). Define P, w(l) and w(2) by

P=[§ 3] ,w<1>=[g],w<z>=(}].

Then, clearly,
Pw(2) = 2w(2) +w(l) , P w(l) = 2w(l) .

Hence w(2) is a generalized eigenvector of order 2. Note that w(2) 1s strict-

ly positive.

One may wonder whether in general the generalized eigenvector of
highest order can be chosen strictly positive. It is intuiltively clear that
the position of the zeros in any generalized eigenvector must be related to

the block—-triangular structure, presented in lemma 2.9. The following result
can be established (ROTHBLUM [48]).

THEOREM 2.12. Let P have spectral radius o and degree v. Then for k=1,..,v

there exist generalized eigenvectors w(k) of order k such that

(2.3.1) P w(v) g w(v)

(2.3.2) P w(k) g w(k) + w(k+1) k =1,...,v"1.

Let {D(v), D(v-1),...,D(1), D(0)} be the principal partition of S with res-
pect to P. Then the vectors w(k) can be chosen in such a way that for

k= 1,0e.,V

v
w(k). >0 for i € \'/ D(L),
. g=K
and
k-1
w(k). =0 for i € \(/ D(R).

1 =0
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PROOF. As before, let P(k’g)

and for k = 1,2,...,v define

denote the restriction of P to D(k) x D(Q),

p (K, K) &k, Hk,0)

P ..., P
Pﬁkul,kwlz.‘. P(k-—-l,l) P(k----1,0)
R(k) := :
"P(lal) P(]:O)
I:,(0,.0)

Noth that R(v) = P. We shall prove, by induction with respect to k, that

for k = 1,2,...,v there exists a sequence of generalized eigenvectors

v(1),...,v(k) such that

R(k) y(2) = o y(L) + y(2+1) 2 = 1,...,k~-1
(2.3.3)
R(k) y(k) = 0 y(k),
2-1 k
with y(!?.)i = 0 for 1 € U D(n), y(!L)i >0 for 1 € UD(H)-
n=0 =9

By lemma 2.9 there exists a vector y(1), defined on D(0) u D(1), such

that
R(1) y(1) = o y(1),
with y(l)i = 0 for 1 € D(0), y'(l)i >0 for 1 € D(1). k1
Suppose, there exist vectors x(1), x(2),...,x(k), defined on \_/ D(n),
n=0
such that
(2.3.4) R(k-1) x(2) =0 x(2) + x(2+1) 2 =1,...,k-1,
-1 k-1
with x(!.)i = 0 for 1 € \_J D(n) and x(f,)i >0 for i e \_) D(n) (2 = 1,..,k)
=0 n=4%
k
We want to find vectors y(1), y(2),..,y(k), defined on \_/ D(n) , such
n=0

that (2.3.3) holds. It seems natural to take

k-1
y(l)i P = :*c(lt)i iel\ /D), =1,...,k.
n=0
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| (L
Note that x(k) = 0. If x(n)( ) denotes the restriction of (M) to D)

—

for n =1,...,k and £ = 0,1,...,k-1, and y(n) (k) the restriction of y(n) to
D(k) for n = 1,...,k, then (2.3.3) reduces to

P(k’k)y(k) (k) = o y(K) (k)
(k,k) (k k. k- -
(2.3.5) F y(e=1) O 4 plicsk l)!':(k“"“'l) (k=1) oy (k-1) () y (k) )
Kk k=1 '
PSPy ® @ Ly ® e ®,

§=]

k,k . . : . :
Note that P( » k) possesses a strictly positive eigenvector, associated with

o. By lemma 2.a.! 1in the appendix to this chapter, there exists a solution

ya ® Ly ®) of (2.3.5) with

)(k) - (P(k’k) * (kakﬂ'l) X(k“l)(kwl).

y (k ) P

. sk .
Since the restriction of (P(k’k)) to the basic classes of P(k’k) 1s strict—

ly positive (lemma 2.5) and since each state in D(k) has access to some
state in D(k-1), it follows from x(k-1) (k=1) >0 that

y (k) (), 0

We now have found a solution {y(1),...,y(k)} of (2.3.3). Note that,
if {y(1),...,y(k)} satisfies (2.3.3), then this holds also for

{w(1),...,w(k)}, defined by

w(k) = y(k)

w(2) = y(2) + o w(2+1) 2 = k-1,k-2,...,1; aeR .

Since y (k) (k) > 0, we can choose o so large, that w(SZ.):‘...L > 0 for 1 € D(k),

2 =1,...,k. This proves the desired results for R(k). The proof can now

be completed by induction. i

COROLLARY. Let P have spectral radius o and index v and suppose that each
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nonbasic class has access to some basic class. Then there exists a general-

ized eigenvector w(v) of order V, associated with o, such that w(v) > 0. [

s

It 1s easily verified that the generalized eigenvector of order 2,
associated with the matrix P of example 3 in section 2.2, can be chosen
strictly positive; take e.g. w(2) = e.

Theorem 2.12 enables us to show a relationship between the position

of basic and nonbasic classes of P and the behaviour of the powers of P.

The following result holds.

THEOREM 2.13. Let P have spectral radius o and degree v, let

{D(V), D(v-1),..., D(1), D(0)} be the princival partition of S with respect

to P, and let {w(v), w(v-1),...,w(1)} be defined as in theorem 2.,12. Choose

_ n
x(0) > 0 and let x(n) := P x(0), n=1,2,.,.. . Then there exist constants

CysCy > 0, such that

> n n-k+1 L n n—k+1
¢y ) (,_1) © w(k), £ x(n); < ¢, ) (,_1) © w(k) .
k=1 k=1
and
. -1 . " .
lim o x(n)i =0 1 € D(0).

T)—>00

PROOF. Let, as before, P(k’g) denote the restrtction of P to D(k) x D(2)

and w(k) (L) the restriction of w(k) to D(2), for all k,%. Hence P(k’p‘)m O

for k < 2 and w(k) (£) = 0 for k > 2. Since o(P(O’O)) < g , there exist

(by lemma 2.6.c) a nonnegative real number A < ¢ and a vector w(\) > 0, de-
fined on D(0), such that

P(O’O) w(d) < 2 w(d).

(k,0) (k)

w(A) ; w(k) tor k=1,...,v and let c >0 be
chosen such that }:(0)i < c w(l)i for 1 € S\D(0) and x(O)i < c w(l)i for
i € D(0). Then, by induction, it is easily shown that

Choose w(A) such that P
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x(n); < A’ wd); i e D(0)
AY, _ .
x(n). < cf Z (kzl) crn"k"-lw(k)i + g 1(1~A0 1) lw(ﬁ)i}

1 € D(2), 2 = 1,...,V.

The other inequalities are proved similarly. By choosing approciate ¢ and

follows. B

Cz the theorem

Lemma 2.10 in section 2.2 is an immediate corollary of theorem 2.13.

Theorems 2.12 and 2.13 can be extended in the same way as lemmas 2.9

and 2.10 (which were extended to lemma 2.11) by decomposition of the matrix

p(0:0) ¢ peo) # ¢

The results in sections 2.2 and 2.3 and particularly theorem 2.12 can

. Details are left to the reader.

be viewed as extensions of the Perron—-Frobenius theorem. Instead of using

matrix-theoretical arguments, we preferred another approach, leading

to these results. The advantage of a characterization of nonnegative elgen-—

of classes and accessibility

vectors and generalized eigenvectors in terms

relations between these classes 1s that i1t can be extended to sets of non-

matrices (cf. chapters 3 until 5). Once having proved these exten-

negative
sions, convergence results for dynamic programming recursions of the type
(1.2.1) are easily established. These convergence results then also hold

matrix' case; we do not discuss them here, since they follow

immediately from results in the forthcoming chapters.

2.&. Some further results

In this section, we relate some of the preceding results to concepts

liar matrix theory. We saw already that the number of basic

in more fami

classes of a square nonnegative matrix P is equal to the algebraic multi-

plicity of its eigenvalue o(P). In this section it 1s shown that the degree

v(P) of a nonnegative matrix P is equal to its index n(P). Moreover, a

basis, consisting of nonnegative vectors only, for the algebraic eigenspace

Nn(P)(P) is constructed. Some of these results have been proved in ROTH-

BLUM [48]; however, the proofs given here are completely different. The
results are not used in the analysis in the forthcoming chapters; we merely
state them fOr completeness.

Theorem 2.12 implies the existence of a generalized eigenvector of
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order v = v(P) for a nonnegative matrix P with spectral radius o(P) and
degree v(P) (i.e. the vector w(l), defined by (2.3.2)). It follows from

definition 2.12 and theorem 2.12 that v(P) < n(P;, the index of P. It is
not hard to show that n(P) = v(P). First we need

LEMMA 2.14. Let P have spectral radius o and let {x(1),...,x(m)} be a set

of generalized eigenvectors such that

Px(m) = 0 x(m)

(2.4.1)

i

P x(k) o x(k) + x(k+1) k=1,...,m1,

Let D(0) < S be the union of all classes with depth zero. Suppose D(0) # @.
Then

x(k)imO 1 e€eDO), k=1,...,m.

PROOF. We proceed by backward induction. Note that D(0) # ¢ implies o > O.
If P x(m) = 0 x(m) then

) P.. x(m). = 0 x(m). 1 € D(0)
7€¢D(0) 1 J 1 ,
e e _ : : . (0,0) _
which implies x(m)i = 0 for 1 € D(0), since o(P ) < o. Suppose x(k) ;=0
for 1 € D(O) and k = m, m1,..., n+l (with n > 1). Then

P x(n) = 0 x(n) + x(n+1) implies

2 P.. x(n). = o x(n). 1 € D(O).
jep(0) H ] .
Hence x(n)i = 0 for i € D(0). ]

Now, let P, 0 and {x(1),...,x(m)} be defined as in lemma 2.14. From
(2.4.1) it easily follows that

(2.4.2)  1im (2D ™ P x(1) = x(w).

oo

Using this, we shall prove :
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THEOREM 2.15. Let P have spectral radius o, degree v and index n.

OOF. Suppose n > v (recall that n < v is impossible). Let

{x(1), x(2),...,x(V), x(v+1)} be a set of vectors satisfying (2.4.1) for

2.14 we may choose a constant ¢ > 0 such that

in = ‘\H-' E » By 1 TR

(2.4.3) =—ex(1) £ x(1) £ ex(1)

with w(1) defined as in theorem 2.12. Since w(l) 1s a generalized eilgenvector

of order v, we have

. (3)"1 0-n+v p w(1) = 0.

Hence, by (2.4.3) and (2.4.2),

- P _
tim (M7 7™V P® x(1) = x(v+1) = 0.
n-—roo v
The conclusion is : n = v. (]

Finally, we show how a basis, consisting of semi-positive generalized

n(P) (P).

eigenvectors, can be constructed for the algebraic eigenspace N

Recall that the number of basic classes of a square nonnegative matrix P

is equal to the algebraic multiplicity a of its eigenvalue o(P). Choose one
particular basic class C and let B be the set of states which have access
to C. Note that C < B, G(PB) = g(P) and v(PB) = k, where k denotes the
height of C with respect to P. According to theorem 2.12, there exists a

generalized eigenvector uB of order k for PB, associated with U(PB) = o(P),

which is strictly positive on B (each class in B has access to C). The
vector u, defined by
B

u. 1 € B
1

0 1 € S\B

is then a semi-positive generalized eigenvector of order k for P, with
respect to 0(P). Repeating this procedure for all basic classes of P, we

obtain a set of o semi-positive generalized eigenvectors. The proof of the
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fact that these generalized eigenvectors are independent (and hence form

a basis) is trivial.
2.5, State classifications
Seo e Dtatt Classirilcations

Before turning to sets of nonnegative matrices with the product

property we introduce the concept of state classifications, which enables
us to simplify the proofs in the next chapter considerably. We start with

two definitions.

DEFINITION 2.13. Let C be a class of states, associated with P. The

accesstibility set A(C) is then the set of all states to which C has access.
]
DEFINITION 2,14, We say that a class C assocn.ated with P has growth rate

p and growth index k, if c(P ) = p and v(P ) = k, where A is the

accessibility set of C. []

Note that, if U(PA) = 0(P), then the growth index k of C is precisely
equal to its depth. In fact, in lemma 2.11 the classes of P are ordered

according to their growth rate and growth index. The reader may verify that

a class in I(k) has growth rate O’(P(k k)

(k,k)

) and growth index t, (compare the

k

definitions of I(k), P and 1:k in lemma 2.11).

A state classification is now defined as follows.

DEFINITION 2.15. A state ieS has growth rate p and growth index k, with
respect to P, if this is so for the class that contains i.

Notation: (ai (P), vi(P)) = (p,k). []

Hence,in lemma 2.11, we have (o. (P), V. (P)) >~ (0’ (P), \J (P)) for

1eI(m), jeI(n) withm< n < r (here % means lexicographically greater) .

P possesses a strictly positive generalized elgenvector of highest
order if and only if o, (P) = 0(P) for all jeS. There exists a strictly
positive r1ght--e1genvector, associated with o(P), if and only 1f
(c (p), \J .(P)) = (O‘(P) ) for all jeS.
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"growth index" are suggested by the

The names ''growth rate' and
following : let P be a square nonnegative matrix, x(0) be a strictly

n
positive vector and let x(n) := P x(0). Then

o.(P) =sup {2 | A >0 ; limsup A " ox(n). > 0},
j h o j

v.(P) = sup {k | k € W; limsup ( = )“](U.(P))*nx(n). > 0}
] Noe K J ]

2.11).

In the next chapter, state classifications will be used in order to

( CD 4410, are 1 emnme

develop iteration procedures for a set K of nonnegative matrices with the

product property. The objective then 1s to find a matrix P such that

(Uj(P), Vs (P)) * (Uj(P), Vj(P))

for all PeK, i.e., a matrix that maximizes the growth of the dynamic system

(1.2.1).
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Appendix 2.A. A fundamental set of equations.

In this appendix we treat a technical detail, needed for the proof

of lemma 2.12.

LEMMA 2.a.1. Let P have spectral radius o and a strictly pos<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>